Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering
نویسندگان
چکیده
In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of questionanswer pair firstly, and then uses the joint representation as input of the long shortterm memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.
منابع مشابه
Exploring the Effectiveness of Convolutional Neural Networks for Answer Selection in End-to-End Question Answering
Most work on natural language question answering today focuses on answer selection: given a candidate list of sentences, determine which contains the answer. Although important, answer selection is only one stage in a standard end-to-end question answering pipeline. is paper explores the eectiveness of convolutional neural networks (CNNs) for answer selection in an end-to-end context using th...
متن کاملAttentive Interactive Neural Networks for Answer Selection in Community Question Answering
Answer selection plays a key role in community question answering (CQA). Previous research on answer selection usually ignores the problems of redundancy and noise prevalent in CQA. In this paper, we propose to treat different text segments differently and design a novel attentive interactive neural network (AI-NN) to focus on those text segments useful to answer selection. The representations ...
متن کاملA Dual Attentive Neural Network Framework with Community Metadata for Answer Selection
Nowadays the community-based question answering (cQA) sites become popular Web service, which have accumulated millions of questions and their associated answers over time. Thus, the answer selection component plays an important role in a cQA system, which ranks the relevant answers to the given question. With the development of this area, problems of noise prevalence and data sparsity become m...
متن کاملISS-MULT: Intelligent Sample Selection for Multi-Task Learning in Question Answering
Transferring knowledge from a source domain to another domain is useful, especially when gathering new data is very expensive and time-consuming. Deep networks have been well-studied for question answering tasks in recent years; however, no prominent research for transfer learning through deep neural networks exists in the question answering field. In this paper, two main methods (INIT and MULT...
متن کاملLearning Semantic Relatedness in Community Question Answering Using Neural Models
Community Question Answering forums, such as Quora and Stackoverflow contain millions of questions and answers. Automatically finding the relevant questions from the existing questions and finding the relevant answers to a new question are Natural Language Processing tasks. In this paper, we aim to address these tasks, which we refer to as similar-Question Retrieval and Answer Selection. We pre...
متن کامل